Может ли быть жизнь на метановых планетах. Живёт ли кракен в Море Кракена? Какие формы жизни мы могли бы найти на Титане? Отсутствие воды на поверхности спутника в жидком состоянии

В январе издательство «Альпина Нон-фикшн» выпускает книгу «За пределами Земли: В поисках нового дома в Солнечной системе» планетолога Аманды Хендрикс и научного журналиста Чарльза Уолфорта. Forbes Life нашел в ней вполне реалистичное предположение того, как мог бы выглядеть человеческий быт на Титане, крупнейшем спутнике Сатурна, и публикует отрывок из книги.

Однажды люди научатся жить на Титане, самом крупном спутнике Сатурна. Они будут черпать энергию из безграничных запасов ископаемого топлива, а кислород - из замерзшей воды, составляющей большую часть массы Титана. Азотная атмосфера, которая плотнее земной, защитит человека от космического излучения и позволит ему жить в негерметичных строениях и передвигаться не в скафандрах, а в очень теплой одежде и респираторах. Люди будут кататься на лодках по озерам жидкого метана и летать, подобно птицам, в холодной плотной атмосфере при помощи крыльев за спиной.

Произойдет это потому, что в определенный момент в этом возникнет необходимость. Сегодня холодные мрачные небеса Титана непривлекательны и невероятно далеки. У нас пока нет технологий, позволяющих отправить людей на Титан. Но технологии развиваются, а перспективы Земли ухудшаются. В прежние времена человеческие существа уже отправлялись в неведомые и опасные дали, когда жизнь в привычном месте становилась невыносимой. Если жители Земли не начнут вести себя иначе, то новый мир на Титане, свободный от войн и климатических катаклизмов, может стать привлекательным для колонистов.

Строительство автономной космической колонии - в нескольких десятилетиях и технологических шагах от нас. Но многие ученые и инженеры уже думают о ней, поскольку это приключение - из тех, ради которых они выбрали профессию, и поскольку создание колонии ставит острейшие вопросы о сегодняшних технологиях, исследованиях и космической промышленности. В самом деле, такая цель, как переселение человека на другую планету, - лучшее оправдание программы США по пилотируемым космическим полетам.

Почему Титан?

Вода в жидкой и твердой форме вдали от Солнца встречается в изобилии. В глубинах спутников Сатурна и Юпитера содержатся скальные породы, но вода составляет куда большую долю их объема, чем у внутренних планет. Например, Титан крупнее Меркурия, его радиус на 50% превышает радиус Луны, но его плотность ниже, а тяготение, соответственно, слабее - ведь вода менее плотна, чем камень и металл.

В Солнечной системе только Титан буквально завален топливом, которое мы могли бы добывать и сжигать, пользуясь технологиями едва ли сложнее газовых печей, встречающихся в типичных американских домах. Земной природный газ в основном состоит из метана, как озера и моря Титана. Прибрежные дюны Титана - тоже углеводородные, в основном из более тяжелых и сложных органических соединений, которые называются полициклическими ароматическими углеводородами. Учитывая атмосферную углеводородную фабрику Титана и низкие температуры, все это логично.

Имея на Титане электростанции, питаемые углеводородным топливом, колонисты могли бы строить большие, освещенные теплицы, выращивать в них пищу и перерабатывать углекислый газ, выделяющийся при сгорании, обратно в кислород. Почти все можно было бы делать из пластика, произведенного из местного сырья. Для добычи металлов и других тяжелых элементов, необходимых для питательных веществ и производства электроники, колония могла бы заняться разработкой астероидов с помощью космических аппаратов. Располагая неограниченной энергией и доступом к ресурсам, колонисты в итоге смогли бы построить дома по берегам озер, ходить по ним на лодках и летать на личном авиатранспорте.

Как будет устроена наша жизнь

Многие ученые воображали, каково было бы жить на Титане, ведь кажется, что это было бы так просто. Ральф Лоренц из Лаборатории прикладной физики Университета Джона Хопкинса написал о Титане пару книг. Он предлагал разнообразные исследовательские миссии, в том числе судно, похожее на буй, и ряд метеостанций. Когда мы общались с ним, он говорил о подлодке. «Любой земной транспорт можно осмысленно использовать где-то на Титане», - сказал Ральф.

На Титане люди могут выжить без скафандров

Лоренц отмечает, что на Титане люди могут выжить без скафандров, передвигаясь тепло одетыми и в кислородных масках, и жить в негерметичных зданиях. Нетрудно вообразить себя в странном оранжевом ландшафте Титана, стоящим на влажном, мягком грунте вроде того, который обнаружил зонд «Гюйгенс», с разбросанной вокруг галькой твердого льда. Темпера- тура там около –180 °C, но в одежде с толстой теплоизоляцией или нагревающими элементами было бы комфортно. Если одежда прорвется, это не убьет вас - главное не замерзнуть. Здесь не нужен громоздкий герметичный костюм вроде тех, что астронавты носят на Луне или в вакууме космоса.

Жилище на Титане может быть устроено подобно жилищам в полярных областях Земли, с использованием воздухонепроницаемой изоляции и свай, уберегающих от таяния лед и замерзшие углеводороды, на которых оно стоит. Простые двойные двери удержат кислород внутри. Если жилище даст течь, ее нужно устранить, но никакой непосредственной угрозы она не представляет. Устранить проблему до надлежащего ремонта можно куском изоленты. Вездесущие углеводороды содержат немало канцерогенов, поэтому, входя домой, важно почистить и снять уличную одежду.

У Титана и Антарктики есть некоторое сходство. Чтобы выжить в этих местах, требуется активное использование технологий, самое важное - обогрева. И туда и туда нужно везти припасы. Чтобы остаться в таком месте навсегда без внешней поддержки, понадобится источник энергии и производство пищи в закрытом помещении. В Антарктике, вероятно, полно ископаемого топлива, однако, чтобы его получить, потребуется пробить толстый лед. На Титане топливо лежит прямо на поверхности, а вот кислород придется добывать из недр. И там и там, чтобы выйти наружу, нужно подобающим образом одеться. Температура на Титане куда ниже, но погода там спокойнее.

Главное отличие Антарктики от Титана в том, что в Антарктике можно дышать атмосферным воздухом. Атмосфера Земли почти на 80% состоит из азота и на 20% - из кислорода. Атмосфера Титана - на 95% из азота и на 5% из метана. Мы не можем жить без кислорода, но все же воздух Титана для нас не является мгновенным ядом. В нем достаточно цианида, чтобы от него сильно разболелась голова, а азот приведет к наркозу, знакомому водолазам: обратимому состоянию, похожему на опьянение. При поломке дыхательного аппарата вы потеряете сознание через минуту, но вас можно возвратить к жизни, если вовремя предоставить доступ к кислороду.

В слабом поле тяготения Титана легко летать

Давление атмосферы Титана на 50% выше, чем на Земле. Этой атмосферы более чем достаточно для защиты от радиации и микрометеоритов. Из-за холода воздух также вчетверо плотнее, чем на Земле. Это приводит к двум любопытным побочным эффектам. Первый - медленно меняющаяся устойчивая погода. Второй - в слабом поле тяготения Титана легко летать.

Тяготение Титана составляет лишь 14% земного, даже меньше, чем лунные 17% (Титан куда крупнее Луны, но Луна содержит больше скальных пород, масса которых порождает более сильное тяготение, чем вода, из которой по большей части состоит Титан). В слабом лунном тяготении астронавты «Аполлона» передвигались прыжками, как при замедленной съемке, будто воздушные шарики, отскакивающие от пола. На Титане с еще меньшей гравитацией их бы дополнительно поддерживала плотная атмосфера; в костюме с крыльями они легко планировали бы на значительные расстояния.

Назад дороги не будет

Человеческое тело, вероятно, приспособится к Титану таким образом, что это затруднит возвращение на Землю.

Наши тела обусловлены тяготением. Кости бегунов формируются более прочными благодаря силе, с которой их стопы сталкиваются с землей. Пациент, надолго прикованный к больничной койке, теряет мышечный тонус и порой ослабевает настолько, что не может стоять. NASA разобралось, как тренировать астронавтов на МКС, чтобы они сохраняли мышечную массу и плотность костей в ходе шестимесячного пребывания в невесомости, но для этого требуется проводить на специальных тренажерах по два часа в день. Большинство колонистов на Титане, скорее всего, будут придерживаться распорядка тренировок не лучше типичного обитателя Земли с неиспользованным абонементом в спортзал. Со временем они, скорее всего, слишком ослабнут для того, чтобы жить на Земле.

Колонисты также будут зависеть от искусственного освещения. Каждый, кто жил в северных широтах, знает, что естественный свет и темнота регулируют жизнь, влияют на настроение и работоспособность как в помещениях, так и на улице. На полюсах солнце светит все лето, а всю зиму стоит ночь. На полюсах никто, кроме исследователей, не живет, но жителям северных регионов намного южнее полюса все равно приходится приспосабливаться к изменениям освещенности физически и с помощью технологий. Коренные народы пережидали зиму, получая из пищи вроде жира морских млекопитающих витамин D, который жители умеренных климатических зон получают от Солнца. Летом народы Севера становятся энергичными и долгими солнечными днями запасают пищу.

Современные обитатели полярных климатических зон поддерживают суточный цикл сна и бодрствования искусственным освещением. Они питаются обработанной пищей, содержащей витамин D (однако зачастую в недостаточном количестве). В отсутствие регулируемого суточного цикла и достаточного количества яркого света и витамина D многие люди впадают в депрессию и сезонную хандру, начинающуюся с осенним ослабеванием естественной освещенности.

Естественные циклы света и темноты будут совершенно непривычными

На Титане освещение помещений и подобающая диета будут круглогодичной необходимостью. Естественные циклы света и темноты будут совершенно непривычными. Будучи спутником Сатурна, Титан всегда повернут к нему одной и той же стороной. Однако оранжевая атмосфера, вероятно, не позволяет увидеть звезды и планеты. (Во всяком случае, Титан находится в плоскости колец Сатурна, так что их не будет видно.) Колония, без сомнения, была бы построена на стороне Титана, обращенной к Сатурну; в этом месте отраженный от Сатурна свет, вероятно, поддерживает слабую освещенность в течение всего дня, за исключением времени, которое Титан оказывается в тени Сатурна. День длится 16 земных суток, так что пару недель освещение будет слегка усиливаться Солнцем, а следующая пара недель будет потемнее. Год на Титане равняется 29 земным годам, так что каждое из четырех времен года длится примерно 7,5 лет. «Кассини» исследовал Титан почти половину местного года, начав летом у южного полушария; сейчас начинается лето в северном полушарии, и мы лишь начинаем понимать влияние сезонов на погоду.

Нам пока еще многое не известно о Титане, но мы знаем, что если туда доберемся, то смогли бы там жить.

Может ли на крупном спутнике Сатурна Титане быть жизнь? Этот вопрос заставляет астробиологов и химиков осторожно и творчески подходить к химии жизни, которая может отличаться от той, к которой мы привыкли здесь, на Земле. В феврале группа ученых Корнелльского университета, включая химика-инженера Джеймса Стевенсона, планетолога Джонатана Лунина и химика-инженера Паулетт Клэнси, опубликовала прорывное исследование, из которого вытекает, что в экзотических химических условиях этой замечательной луны могли образоваться клеточные мембраны.

Во многих отношениях Титан - близнец Земли. Это второй по величине спутник в Солнечной системе, он больше планеты Меркурий. Как и Земля, Титан обладает существенной атмосферой, давление которой на поверхности немного ниже земного. Помимо Земли, Титан является единственным объектом нашей Солнечной системы, который накапливает жидкость на поверхности. Космический зонд NASA «Кассини» обнаружил обильные озера и даже реки в полярных регионах Титана. Крупнейшее озеро, или море, море Кракена, больше Каспийского моря на Земле. Ученые знают, как по наблюдениям аппарата, так и по лабораторным экспериментам, что атмосфера Титана богата сложными органическими молекулами, которые являются строительными кирпичиками жизни.

После ознакомления с этими особенностями, начинает казаться, что Титан невероятно подходит для жизни. Название «Кракен», которое отсылает к легендарному морскому чудовищу, причудливо отражает нетерпеливые надежды астробиологов. Но Титан - это злой близнец Земли. Будучи почти в десять раз дальше от Солнца, чем Земля, на поверхности он не прогревается совсем: температура устойчиво держится на -180 градусах по Цельсию. Жидкая вода необходима для известной нам жизни, но на поверхности Титана вся вода замерзла напрочь. Водяной лед берет на себя роль, которая на Земле отведена богатым кремнием породам, составляя внешние слои коры спутника.

Жидкость, которая наполняет моря и реки Титана, - это не вода, а жидкий метан, возможно, смешанный с другими субстанциями вроде жидкого этана, которые на Земле чаще всего присутствуют в газообразном состоянии. Если в морях Титана и есть жизнь, мы с ней не знакомы. Это должна быть инопланетная форма жизни, с органическими молекулами, растворенными в жидком метане, а не в жидкой воде. Возможно ли это вообще?

Ученые Корнелльского университета отвели изучению этого вопроса важную роль: они исследовали, могут ли клеточные мембраны существовать в жидком метане. Каждая живая клетка является, по существу, самоподдерживающейся сетью химических реакций, содержащихся в пределах мембран. Ученые думают, что клеточные мембраны образовались очень рано в истории Земли, а их образование вообще могло было быть первым шагом в происхождении жизни.

Здесь, на Земле, клеточные мембраны известны нам по урокам биологии. Они состоят из крупных молекул - фосфолипидов. У каждой молекулы фосфолипида есть «голова» и «хвост». Голова содержит фосфатную группу, атом фосфора, связанный с несколькими атомами кислорода. Хвост состоит из одной или нескольких цепей атомов углерода, обычно от 15 до 20 атомов в длину, с прикрепленными атомами водорода с каждой стороны. Голова из-за отрицательного заряда своей фосфатной группы имеет неравное распределение электрического заряда, мы называем ее полярной. Хвост, с другой стороны, электрически нейтрален.

Эти электрические свойства определяют, как молекулы фосфолипида будут вести себя, будучи растворенными в воде. Электрически говоря, вода - полярная молекула. Электроны в молекуле воды сильнее притягиваются к атому кислорода, чем к двум атомам водорода. Таким образом, сторона молекулы, где два атома водорода, имеет слабый положительный заряд, а та сторона, где кислород, имеет слабый отрицательный заряд. Эти полярные свойства воды приводят к тому, что она притягивает полярную голову молекулы фосфолипида, которая гидрофильна, и отталкивает ее неполярный хвост, который гидрофобный.

Когда молекулы фосфолипидов растворяются в воде, электрические свойства двух этих веществ работают совместно, заставляя молекулы фосфолипидов организовываться в мембраны. Эта мембрана закрывает себя в небольшую сферу, называемую липосомой. Молекулы фосфолипидов образуют бислой толщиной в две молекулы. Полярные гидрофильные головки обращены наружу по направлению к воде, изнутри и снаружи мембраны. Гидрофобные хвосты зажаты между, направленные друг на друга. В то время как молекулы фосфолипидов остаются зафиксированными в своем слое, а их головки обращены наружу, хвосты внутрь, они могут двигаться относительно друг друга, обеспечивая мембрану гибкостью жидкости, необходимой для жизни.

Фосфолипидные бислойные мембраны являются основой всех клеточных мембран на Земле. Липосомы могут расти, размножаться и осуществлять определенные химические реакции, необходимые для жизни, поэтому некоторые биохимики считают, что образование липосом, возможно, было первым важным шагом в направлении жизни. В любом случае формирование клеточных мембран, безусловно, является одним из первых шагов к появлению жизни на Земле.

Если на Титане существует какая-нибудь форма жизни, будь то морское чудовище или (что более вероятно) микроб, оно почти наверняка будет обладать клеточными мембранами, как и каждое живое существо на Земле. Могут ли фосфолипидные бислойные мембраны образоваться в жидком метане Титана? Ответ: нет. В отличие от воды, молекула метана имеет равномерное распределение электрических зарядов. Ей не хватает полярных качеств воды, поэтому она не может притягивать полярные головки молекул фосфолипида. Это притяжение необходимо, чтобы образовать мембрану земного типа.

Проводились эксперименты, в ходе которых фосфолипиды растворяли в неполярных жидкостях при обычной комнатной температуре. В таких условиях фосфолипиды образуют два слоя вывернутых наизнанку мембран. Полярные головки молекул фосфолипида находятся в центре, притягиваясь друг к другу электрическими зарядами. Неполярные хвосты обращены наружу на каждой стороне вывернутой наизнанку мембраны, встречая неполярный растворитель.

Может ли жизнь на Титане развиваться с вывернутой наизнанку фосфолипидной мембраной? Корнелльские ученые пришли к выводу, что нет, по двум причинам. Первая в том, что при криогенных температурах жидкого метана хвосты фосфолипидов становятся жесткими, лишая вывернутую мембрану гибкости, необходимой для жизни. Вторая в том, что два ключевых ингредиента фосфолипидов, фосфор и кислород, вряд ли доступны в метановых озерах Титана. В поисках клеточных мембран Титана корнелльская команда должна была выйти за пределы школьного курса биологии.

И хотя она не будет состоять из фосфолипидов, ученые посчитали, что любая клеточная мембрана Титана будет, тем не менее, похожей на вывернутую наизнанку фосфолипидную мембрану, созданную в лаборатории. Она будет состоять из полярных молекул, цепляющихся вместе электрически в растворе неполярного жидкого метана. Какими могли бы быть эти молекулы? Для ответа ученые изучили данные космического аппарата «Кассини» и лабораторных экспериментов по воспроизводству химии атмосферы Титана.

Атмосфера Титана, как известно, имеет очень сложную химию. Она состоит по большей части из азота и газообразного метана. Когда космический аппарат «Кассини» проанализировал ее состав с помощью спектроскопии, он нашел следы различных соединений углерода, азота и водорода, нитрилы и амины. Ученые смоделировали химию атмосферы Титана в лаборатории, подвергая смеси азота и метана источникам энергии, имитирующих солнечный свет на Титане. Образовалась тушенка из органических молекул под названием «толины». Они состоят из соединений водорода и углерода (углеводородов), нитрилов и аминов.

Корнелльские ученые увидели в нитрилах и аминах потенциальных кандидатов на клеточные мембраны Титана. Обе молекулы полярны, могут слипнуться с образованием мембраны в неполярном жидком метане из-за полярности азотсодержащих групп в них. Ученые предположили, что такие молекулы могут быть намного меньше фосфолипидов и образовать жидкие мембраны при температурах жидкого метана. Нитрилы и амины содержали цепи с тремя-шестью атомами углерода. В честь азотсодержащих групп ученые и назвали гипотетический аналог липосомы на Титане: азотосома.

Синтезировать азотосомы для экспериментального исследования было бы трудно и дорого, поскольку эксперимент должен был бы проводиться при криогенных температурах жидкого метана. Но так как молекулы-кандидаты расширенно изучались по другим причинам, ученые Корнелльского университета сочли оправданным обращение к инструментам вычислительной химии для определения того, могут ли их молекулы соединяться как гибкая мембрана в жидком метане. Вычислительные модели успешно используются для изучения обычных фосфолипидных клеточных мембран.

Расчеты группы показали, что некоторые кандидаты среди веществ можно исключить, поскольку они не связываются в мембрану, будут слишком жесткими или образуют твердое вещество. Тем не менее моделирование показало, что ряд веществ будет формировать мембраны с подходящими свойствами. Одно из таких веществ - акрилонитрил, присутствующий в атмосфере Титана, как показал «Кассини», в концентрации 10 частей на миллион. Несмотря на огромную разницу в температурах между криогенными азотосомами и комнатными липосомами, моделирование показало, что они будут обладать на удивление схожими свойствами в плане стабильности и отзывчивости на механические воздействия. Клеточные мембраны, выходит, могут сформировать жизнь в жидком метане.

Ученые из Корнелльского университета отмечают, что их выводы не более чем первый шаг к изучению возможности существования жизни в жидком метане, а также к разработке методов, которые понадобятся будущим космическим аппаратам для поиска ее на Титане. Если жизнь может существовать в жидком метане, последствия такой находки пойдут далеко за пределы Титана.

В поисках условий, пригодных для жизни, в галактике, астрономы обычно ищут экзопланеты в пределах обитаемой зоны звезды, довольно узком диапазоне дистанций, на которых планета с подобной земной атмосферой будет обладать жидкой водой. Если метановая жизнь возможна, звезды также должны иметь метановую потенциально обитаемую зону, область, в которой метан может существовать в жидком состоянии. Число потенциально обитаемых миров в галактике тогда значительно вырастет. Возможно, метановая жизнь эволюционирует в сложные формы, которые нам даже представить страшно. Возможно, какая-то ее часть будет чем-то подобна морским чудовищам.

Или воды.

Некоторые модели показывают, что Титан может поддерживать существование «инвертированных» полупроницаемых мембран на основе акрилонитрила в жидкой неполярной метан-этановой смеси на его поверхности , однако в условиях, при которых метан-этановая смесь существует в жидком состоянии, все молекулы крупнее и полярнее акрилонитрила неизбежно кристаллизуются - ввиду гораздо большей силы связи между полярными молекулами (на этом принципе основано фракционирование углеводородов и спиртовое осаждение нуклеиновых кислот). В то же время в данной среде наблюдаются сложные химические процессы избирательного обмена и накопления ряда веществ, что является предметом широких дискуссий в сообществе планетологов, в том числе и в NASA . Атмосфера Титана плотная, химически активная и богата органическими соединениями; эти факты подтолкнули учёных на дополнительные предположения о наличии жизни или предпосылок к жизни, особенно в верхних слоях атмосферы . Его атмосфера также содержит водород , а метан может сочетаться с некоторыми из органических соединений (например, с ацетиленом) для получения энергии и развития жизни .

Температура в прошлом [ | ]

В 1970-х годах астрономы обнаружили неожиданно высокие уровни инфракрасных выбросов от Титана. Одним из возможных объяснений этого было то, что поверхность Титана была теплее, чем ожидалось, из-за парникового эффекта. Некоторые оценки температуры поверхности даже приближаются к температуре в прохладных регионах Земли . Существовало, однако, ещё одно возможное объяснение для инфракрасного излучения: на поверхности было очень холодно, но верхняя атмосфера нагревалась за счёт поглощения ультрафиолетового света молекулами этана , этилена и ацетилена .

Температура в будущем [ | ]

Титан может стать значительно теплее в будущем. Через шесть миллиардов лет, когда Солнце станет красным гигантом, температура на поверхности Титана может увеличиться до 200 К (-70° С) [ ] , что достаточно для существования стабильного океана из водно-аммиачной смеси на его поверхности. Эти условия могут создать приятную среду для экзотических форм жизни и будут сохраняться в течение нескольких сотен миллионов лет. Этого времени достаточно для зарождения относительно простой жизни.

Отсутствие воды на поверхности спутника в жидком состоянии [ | ]

Видимое отсутствие жидкой воды на поверхности Титана было процитировано NASA как аргумент против жизни на спутнике. По словам агентства, вода имеет важное значение не только как «растворитель для жизни, которую мы знаем», но и потому, что это «однозначно подходит для содействия самоорганизации органических веществ» .

Формирование сложных молекул [ | ]

Возможность обитания под поверхностью [ | ]

Моделирование привело к предположению, что на Титане существует достаточно органических веществ для начала химической эволюции аналогично тому, что, как полагают, началось на Земле . Хотя аналогия предполагает наличие жидкой воды на более длительные сроки, чем наблюдаемые в настоящее время, все же несколько теорий предполагают, что жидкая вода из последствий может быть сохранена в мёрзлом слое изоляции. Теплообмен между внутренними и верхними слоями будет иметь решающее значение для сохранения какой-либо группы жизни. Обнаружение микробной жизни на Титане во многом будет зависеть от этих биогенных факторов.

Кроме того, было отмечено, что жидкие океаны аммиака или даже воды могут существовать глубоко ниже поверхности. Мощное приливное действие Сатурна может привести к разогреву ядра и поддержанию достаточно высокой температуры для существования жидкой воды . Сравнение снимков «Кассини » за 2005 и 2007 годы показало, что детали ландшафта сместились примерно на 30 км. Поскольку Титан всегда повёрнут к Сатурну одной стороной, такой сдвиг может объясняться тем, что ледяная кора отделена от основной массы спутника глобальной жидкой прослойкой .

Предполагается, что в воде содержится значительное количество аммиака (около 10 %), который действует на воду как антифриз , то есть понижает температуру её замерзания. В сочетании с высоким давлением, оказываемым корой спутника, это может являться дополнительным условием существования подповерхностного океана .

Согласно данным, обнародованным в конце июня 2012 года и собранным ранее КА «Кассини», под поверхностью Титана (на глубине около 100 км) действительно должен находиться океан, состоящий из воды с возможным небольшим количеством солей . В результатах нового исследования, опубликованных в 2014 году и основанных на гравитационной карте спутника, построенной на основании данных, собранных «Кассини », учёные высказали предположение, что жидкость в океане спутника Сатурна отличается повышенной плотностью и экстремальной соленостью. Скорее всего, она представляет собой в состав которого входят соли, содержащие натрий, калий и серу. Кроме того, в разных районах спутника глубина океана варьируется - в одних местах вода промерзает, изнутри наращивая ледяную корку, покрывающую океан, и слой жидкости в этих местах практически не сообщается с поверхностью Титана. Сильная солёность подповерхностного океана делает практически невозможным существование в нём жизни.

Обитание в жидких озёрах [ | ]

Кроме того, было высказано предположение, что жизнь может существовать в жидких метане и этане на поверхности Титана, которые имеют форму рек и озёр, так же, как организмы на Земле живут в воде. Такие существа использовали бы H 2 вместо O 2 и реагировали с ацетиленом вместо глюкозы , и производили бы метан, а не углекислый газ .

Растворители [ | ]

Существует дискуссия об эффективности метана в качестве растворителя для жизни по сравнению с водой: вода является более мощным растворителем, чем метан, что позволяет ей легче переносить вещество в клетку, но меньшая химическая реактивность метана позволяет ему легче образовывать крупные структуры, например белки и им подобные.

Другое предположение состоит в том, что организмы, живущие в среде жидкого метана или этана, могут использовать различные соединения в качестве растворителя. Например, фосфин (PH 3) и простые соединения фосфора и водорода. Как вода и аммиак, фосфин имеет полярность, но он существует в виде жидкости при более низких температурах, чем аммиак или вода. В жидком этане фосфин имеет форму отдельных капель, а это означает, что ячейкоподобные структуры могли бы существовать без клеточных мембран.

Результаты исследований [ | ]

Панспермия [ | ]

Были предложены и альтернативные объяснения для гипотетического существования жизни на Титане: если жизнь и существует на Титане, то было бы статистически вероятно, что произошла она от Земли или от другой планеты и появилась независимо в ходе процесса, известного как панспермия . Было предположено, что астероиды и кометы могли занести туда жизнь. Но с другой стороны, любому живому существу, попавшему в криогенные углеводородные озёра Титана, необходимо было бы приспособиться к столь сложным условиям жизни, что является весьма маловероятным.

См. также [ | ]

Примечания [ | ]

  1. Живёт ли кракен в Море Кракена? Какие формы жизни мы могли бы найти на Титане? (неопр.) . geektimes.ru. Проверено 18 ноября 2015.
  2. Что потребляет водород и ацетилен на Титане? (англ.)

Необычное распределение веществ в атмосфере спутника Сатурна и на его поверхности подкрепляет версию о существовании там микроорганизмов. И хотя у найденных аномалий, как уточняют специалисты, вполне может найтись и абиогенное объяснение, бактерии Титана — один из вероятных кандидатов в виновники наблюдаемых чудес.

Ещё пять лет назад учёные предположили , что на Титане может существовать необычная форма жизни — организмы, производящие метан. Дышать такие существа должны водородом, а в пищу употреблять ацетилен . Присутствие таких бактерий приводило бы к различию в концентрации водорода в толще атмосферы Титана и близ его поверхности. То же верно и в отношении ацетилена: на поверхности его практически не должно быть, если микробы его постоянно съедают.

Именно такой результат и принёс анализ данных со спектрометров Cassini. Никаких признаков ацетилена внизу не найдено, хотя ультрафиолет должен постоянно производить его в атмосфере спутника из имеющихся там веществ. Аналогично обстоит дело с водородом. Ультрафиолет в верхней атмосфере разлагает метан и всё тот же ацетилен, так что водород на грунт Титана поступает не меньшим потоком, чем убегает в космос. Но на самой поверхности водород исчезает.

Возможное абиогенное объяснение: синтез метана из водорода и ацетилена на поверхности луны. Но в силу низкой температуры на Титане такие реакции могут быть запущены только в присутствии мощного катализатора, например неких неизвестных ещё минералов, сообщают исследователи в пресс-релизе Лаборатории реактивного движения. И хотя бритва Оккама заставляет выдвигать биологическую версию в последнюю очередь, открытие ранее предсказанных аномалий для сторонников внеземной жизни — оптимистичный сигнал.

Титан — настоящая кладовая органики . Вот ещё одно подтверждение: на поверхности не найден водяной лёд, хотя он там должен быть. Объяснение: из атмосферы постоянно выпадает столь много органических соединений, что они укрывают лёд слоем от нескольких миллиметров до сантиметров (это на суше, а глубина озёр ещё точно не известна). В частности, приборы обнаружили на поверхности Титана бензол и ещё один сложный углеводород, пока неопознанный.

Результаты исследований по ацетилену и водороду Титана опубликованы соответственно в

Ученые предположили существование клеточной мембраны, состоящей из мелких органических соединений азота и способной функционировать в жидком метане при температуре в 292 градуса ниже нуля. Их работа была опубликована 27 февраля в Science Advance, ведущим исследователем стал Паулетт Клэнси, специалист в области химической молекулярной динамики, ее первым автором стал Джеймс Стивенсон, аспирант в области химической инженерии, соавтором работы стал Джонатан Лунин, директор Корнельского центра радиофизики и космических исследований.

Лунин изучает луны Сатурна и был в команде междисциплинарных ученых миссии «Кассини-Гюйгенс», которая обнаружила метан-этановые моря на Титане. Заинтересовавшись возможным существованием жизни на основе метана на Титане, около года назад Лунин обратился к Корнельскому факультету за помощью в создании химической модели. Клэнси согласился помочь.

«Мы не биологи и не астрономы, но у нас были нужные инструменты, - говорит Клэнси. - Может быть, это помогло, потому что у нас не было никаких предубеждений о том, что должно быть в мембране, а чего быть не должно. Мы просто работали с соединениями, которые знали, и задались вопросом: если бы это была наша палитра, что из нее можно было бы сделать?».

Так выглядит 9-нанометровая азотосома

На Земле в основе жизни лежит фосфолипидная двухслойная мембрана, прочная, проницаемая, водянистая везикула, которая удерживает органическое вещество каждой клетки. Везикула, состоящая из такой мембраны, называется липосомой. Многие астрономы ищут внеземную жизнь в так называемых потенциально обитаемых зонах, узких полосах вокруг Солнца, в пределах которых может существовать жидкая вода. Но что, если клетки в своей основе состоят не из воды, а из метана, у которого более низкая температура замерзания?

Инженеры назвали свою гипотетическую клеточную мембрану «азотосомой», от азота. «Липосома» берет начало от греческих слов «lipos» и «soma», которые означают жидкое тело; по аналогии, азотосома означает «азотное тело».

Азотосома состоит из молекул азота, углерода и водорода, которые, как известно, существуют в криогенных морях Титана, но демонстрирует такую же стабильность и гибкость, что и земной аналог - липосома. Это стало неожиданностью для химиков вроде Клэнси и Стивенсона, которые никогда не задумывались о механике клеточной стабильности до этого; чаще они занимаются исследованием полупроводников.

Инженеры использовали метод молекулярной динамики, который ищет кандидаты-компоненты на основе метана, которые могли бы самособираться в мембранные структуры. Наиболее перспективный компонент из обнаруженных - акрилонитрильная азотосома, которая показала хорошую стабильность, сопротивление к распаду и гибкость, присущую фосфолипидным мембранам на Земле. Акрилонитрил - бесцветное, токсичное, жидкое органическое соединение, используемое в производстве акриловых волокон, смол и термопластичных материалов - присутствует в атмосфере Титана.

Обрадованный первыми доказательствами своей концепции, Клэнси заявил, что следующим шагом будет попытка демонстрации, что эти клетки могут уживаться в метановой среде - что должно стать аналогом воспроизводства и метаболизма бескислородных клеток на основе метана.

Лунин надеется на долгосрочную перспективу проверки этих идей на самом Титане, как он сам выразился, «когда мы отправим зонд плавать по морям этой удивительной луны и напрямую опробуем органику».

Стивенсон говорит, что частично вдохновлялся творчеством Айзека Азимова, который написал в 1962 году эссе на тему жизни на безводной основе под названием ‘Not as We Know It’ («Не такая, как мы ее знаем»).